| File: | build-analysis/../src/plugins/vocoder/pvocoder.c |
| Warning: | line 185, column 25 Array access (via field 'stftplans') results in a null pointer dereference |
| 1 | /* Phase vocoder routine for time-stretching of audio signal | |||
| 2 | * Copyright (C) 2006 Juho Vähä-Herttua | |||
| 3 | * | |||
| 4 | * This program is free software; you can redistribute it and/or | |||
| 5 | * modify it under the terms of the GNU General Public License | |||
| 6 | * as published by the Free Software Foundation; either version 2 | |||
| 7 | * of the License, or (at your option) any later version. | |||
| 8 | * | |||
| 9 | * This program is distributed in the hope that it will be useful, | |||
| 10 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | |||
| 11 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |||
| 12 | * GNU General Public License for more details. | |||
| 13 | * | |||
| 14 | * You should have received a copy of the GNU General Public License | |||
| 15 | * along with this program; if not, write to the Free Software | |||
| 16 | * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, | |||
| 17 | * MA 02110-1301, USA. | |||
| 18 | * | |||
| 19 | * | |||
| 20 | * References | |||
| 21 | * ---------- | |||
| 22 | * | |||
| 23 | * Phase vocoder routine based on matlab example code of Dan Ellis: | |||
| 24 | * http://labrosa.ee.columbia.edu/matlab/pvoc/ | |||
| 25 | * | |||
| 26 | * Attack detection methods based on paper: | |||
| 27 | * Axel Röbel - Transient detection and preservation in the phase vocoder | |||
| 28 | * (Released in ICMC2003) | |||
| 29 | * | |||
| 30 | */ | |||
| 31 | ||||
| 32 | #include <stdlib.h> | |||
| 33 | #include <string.h> | |||
| 34 | #include <math.h> | |||
| 35 | #include <assert.h> | |||
| 36 | ||||
| 37 | #include "pvocoder.h" | |||
| 38 | ||||
| 39 | #define CLAMP(x, low, high)(((x) > (high)) ? (high) : (((x) < (low)) ? (low) : (x) )) (((x) > (high)) ? (high) : (((x) < (low)) ? (low) : (x))) | |||
| 40 | #define ABS(x)(x < 0.0 ? -x : x) (x < 0.0 ? -x : x) | |||
| 41 | ||||
| 42 | struct pvocoder_s { | |||
| 43 | /* Basic information about the stream */ | |||
| 44 | int channels; | |||
| 45 | int chunksize; | |||
| 46 | int overlaps; | |||
| 47 | ||||
| 48 | /* Configurable processing variables */ | |||
| 49 | double scale; | |||
| 50 | int attack_detection; | |||
| 51 | ||||
| 52 | /* Index variables and input/output buffers */ | |||
| 53 | long index; | |||
| 54 | double scaleidx; | |||
| 55 | pvocoder_sample_t *win; | |||
| 56 | pvocoder_sample_t *inbuf; | |||
| 57 | pvocoder_sample_t *outbuf; | |||
| 58 | ||||
| 59 | /* Fourier transformation buffers */ | |||
| 60 | FFTWT (complex)fftwf_complex **stft; | |||
| 61 | FFTWT (complex)fftwf_complex *stftbuf; | |||
| 62 | FFTWT (plan)fftwf_plan *stftplans; | |||
| 63 | long stftidx; | |||
| 64 | ||||
| 65 | /* Center of gravity buffer and plan and data */ | |||
| 66 | FFTWT (complex)fftwf_complex *cogbuf; | |||
| 67 | FFTWT (plan)fftwf_plan cogplan; | |||
| 68 | int transient; | |||
| 69 | ||||
| 70 | /* Inverse transformation buffers */ | |||
| 71 | FFTWT (complex)fftwf_complex *invbuf; | |||
| 72 | FFTWT (plan)fftwf_plan invplan; | |||
| 73 | ||||
| 74 | /* Current phase information */ | |||
| 75 | FFTWT (complex)fftwf_complex *phase; | |||
| 76 | }; | |||
| 77 | ||||
| 78 | static void pvocoder_reset (pvocoder_t *pvoc); | |||
| 79 | static void pvocoder_get_window (pvocoder_sample_t *buffer, | |||
| 80 | int chunksize, | |||
| 81 | int winsize); | |||
| 82 | static void pvocoder_calculate_chunk (pvocoder_t *pvoc, double index); | |||
| 83 | ||||
| 84 | pvocoder_t * | |||
| 85 | pvocoder_init (int chunksize, int channels) | |||
| 86 | { | |||
| 87 | pvocoder_t *ret; | |||
| 88 | int i, nsamples; | |||
| 89 | ||||
| 90 | assert (chunksize > 0)((chunksize > 0) ? (void) (0) : __assert_fail ("chunksize > 0" , "../src/plugins/vocoder/pvocoder.c", 90, __PRETTY_FUNCTION__ )); | |||
| 91 | assert (channels > 0)((channels > 0) ? (void) (0) : __assert_fail ("channels > 0" , "../src/plugins/vocoder/pvocoder.c", 91, __PRETTY_FUNCTION__ )); | |||
| 92 | ||||
| 93 | ret = calloc (1, sizeof (pvocoder_t)); | |||
| 94 | if (!ret) | |||
| ||||
| 95 | goto error_init; | |||
| 96 | ||||
| 97 | nsamples = chunksize * channels; | |||
| 98 | ret->channels = channels; | |||
| 99 | ret->chunksize = chunksize; | |||
| 100 | ret->scale = 1.0; | |||
| 101 | ret->attack_detection = 0; | |||
| 102 | pvocoder_reset (ret); | |||
| 103 | ||||
| 104 | /* Create the (Hann) window for sample chunks */ | |||
| 105 | ret->win = FFTWT (malloc)fftwf_malloc(chunksize * sizeof (FFTWT (complex)fftwf_complex)); | |||
| 106 | if (!ret->win) | |||
| 107 | goto error_init; | |||
| 108 | pvocoder_get_window (ret->win, chunksize, chunksize); | |||
| 109 | ||||
| 110 | /* Reserve inbuf and outbuf for 2 chunks so we can filter all overlaps */ | |||
| 111 | ret->inbuf = calloc (2 * nsamples, sizeof (pvocoder_sample_t)); | |||
| 112 | ret->outbuf = calloc (2 * nsamples, sizeof (pvocoder_sample_t)); | |||
| 113 | if (!ret->inbuf || !ret->outbuf) | |||
| 114 | goto error_init; | |||
| 115 | ||||
| 116 | /* One buffer for each overlap plus the one of next chunk */ | |||
| 117 | ret->stft = calloc (ret->overlaps + 1, sizeof (FFTWT (complex *)fftwf_complex *)); | |||
| 118 | ret->stftbuf = FFTWT (malloc)fftwf_malloc((ret->overlaps + 1) * nsamples * | |||
| 119 | sizeof (FFTWT (complex)fftwf_complex)); | |||
| 120 | ret->stftplans = calloc (ret->overlaps + 1, sizeof (FFTWT (plan)fftwf_plan)); | |||
| 121 | if (!ret->stft || !ret->stftbuf || !ret->stftplans) | |||
| 122 | goto error_init; | |||
| 123 | ||||
| 124 | /* Update pointers into stftbuf array */ | |||
| 125 | for (i=0; i<=ret->overlaps; i++) | |||
| 126 | ret->stft[i] = ret->stftbuf + i * nsamples; | |||
| 127 | /* Calculate best plans for each stft buffer */ | |||
| 128 | for (i=1; i<=ret->overlaps; i++) { | |||
| 129 | ret->stftplans[i] = | |||
| 130 | FFTWT (plan_many_dft)fftwf_plan_many_dft(1, &chunksize, channels, | |||
| 131 | ret->stft[i], NULL((void*)0), channels, 1, | |||
| 132 | ret->stft[i], NULL((void*)0), channels, 1, | |||
| 133 | FFTW_FORWARD(-1), FFTW_MEASURE(0U)); | |||
| 134 | } | |||
| 135 | ||||
| 136 | /* Allocate center of gravity buffer and create plan */ | |||
| 137 | ret->cogbuf = FFTWT (malloc)fftwf_malloc(nsamples * sizeof (FFTWT (complex)fftwf_complex)); | |||
| 138 | if (!ret->cogbuf) | |||
| 139 | goto error_init; | |||
| 140 | ret->cogplan = FFTWT (plan_many_dft)fftwf_plan_many_dft(1, &chunksize, channels, | |||
| 141 | ret->cogbuf, NULL((void*)0), channels, 1, | |||
| 142 | ret->cogbuf, NULL((void*)0), channels, 1, | |||
| 143 | FFTW_BACKWARD(+1), FFTW_MEASURE(0U)); | |||
| 144 | ret->transient = 0; | |||
| 145 | ||||
| 146 | /* Allocate buffer for doing the calculations and inverse fft */ | |||
| 147 | ret->invbuf = FFTWT (malloc)fftwf_malloc(nsamples * sizeof (FFTWT (complex)fftwf_complex)); | |||
| 148 | if (!ret->invbuf) | |||
| 149 | goto error_init; | |||
| 150 | for (i=0; i<nsamples; i++) { | |||
| 151 | ret->invbuf[i][0] = ret->invbuf[i][1] = 0.0; | |||
| 152 | } | |||
| 153 | ret->invplan = FFTWT (plan_many_dft)fftwf_plan_many_dft(1, &chunksize, channels, | |||
| 154 | ret->invbuf, NULL((void*)0), channels, 1, | |||
| 155 | ret->invbuf, NULL((void*)0), channels, 1, | |||
| 156 | FFTW_BACKWARD(+1), FFTW_MEASURE(0U)); | |||
| 157 | ||||
| 158 | /* Allocate buffer for phase information of current stream */ | |||
| 159 | ret->phase = FFTWT (malloc)fftwf_malloc(nsamples/2 * sizeof (FFTWT (complex)fftwf_complex)); | |||
| 160 | if (!ret->phase) | |||
| 161 | goto error_init; | |||
| 162 | ||||
| 163 | return ret; | |||
| 164 | ||||
| 165 | error_init: | |||
| 166 | pvocoder_close (ret); | |||
| 167 | return NULL((void*)0); | |||
| 168 | } | |||
| 169 | ||||
| 170 | void | |||
| 171 | pvocoder_close (pvocoder_t *pvoc) | |||
| 172 | { | |||
| 173 | int i; | |||
| 174 | ||||
| 175 | if (pvoc) { | |||
| 176 | FFTWT (free)fftwf_free(pvoc->phase); | |||
| 177 | ||||
| 178 | FFTWT (destroy_plan)fftwf_destroy_plan(pvoc->invplan); | |||
| 179 | FFTWT (free)fftwf_free(pvoc->invbuf); | |||
| 180 | ||||
| 181 | FFTWT (destroy_plan)fftwf_destroy_plan(pvoc->cogplan); | |||
| 182 | FFTWT (free)fftwf_free(pvoc->cogbuf); | |||
| 183 | ||||
| 184 | for (i=1; i<=pvoc->overlaps; i++) | |||
| 185 | FFTWT (destroy_plan)fftwf_destroy_plan(pvoc->stftplans[i]); | |||
| ||||
| 186 | free (pvoc->stftplans); | |||
| 187 | FFTWT (free)fftwf_free(pvoc->stftbuf); | |||
| 188 | free (pvoc->stft); | |||
| 189 | ||||
| 190 | free (pvoc->inbuf); | |||
| 191 | free (pvoc->outbuf); | |||
| 192 | free (pvoc->win); | |||
| 193 | } | |||
| 194 | free (pvoc); | |||
| 195 | } | |||
| 196 | ||||
| 197 | void | |||
| 198 | pvocoder_set_scale (pvocoder_t *pvoc, double scale) | |||
| 199 | { | |||
| 200 | assert (pvoc)((pvoc) ? (void) (0) : __assert_fail ("pvoc", "../src/plugins/vocoder/pvocoder.c" , 200, __PRETTY_FUNCTION__)); | |||
| 201 | ||||
| 202 | if (!pvoc) | |||
| 203 | return; | |||
| 204 | pvoc->scale = scale; | |||
| 205 | } | |||
| 206 | ||||
| 207 | void | |||
| 208 | pvocoder_set_attack_detection (pvocoder_t *pvoc, int enabled) | |||
| 209 | { | |||
| 210 | assert (pvoc)((pvoc) ? (void) (0) : __assert_fail ("pvoc", "../src/plugins/vocoder/pvocoder.c" , 210, __PRETTY_FUNCTION__)); | |||
| 211 | ||||
| 212 | if (!pvoc) | |||
| 213 | return; | |||
| 214 | pvoc->attack_detection = enabled; | |||
| 215 | } | |||
| 216 | ||||
| 217 | /** | |||
| 218 | * Add new chunk to stft table, mainly window the data, perform some | |||
| 219 | * stft transforms and update the stft table accordingly. | |||
| 220 | */ | |||
| 221 | void | |||
| 222 | pvocoder_add_chunk (pvocoder_t *pvoc, pvocoder_sample_t *chunk) | |||
| 223 | { | |||
| 224 | pvocoder_sample_t *inbuf; | |||
| 225 | int nsamples, i, j; | |||
| 226 | ||||
| 227 | assert (pvoc)((pvoc) ? (void) (0) : __assert_fail ("pvoc", "../src/plugins/vocoder/pvocoder.c" , 227, __PRETTY_FUNCTION__)); | |||
| 228 | assert (chunk)((chunk) ? (void) (0) : __assert_fail ("chunk", "../src/plugins/vocoder/pvocoder.c" , 228, __PRETTY_FUNCTION__)); | |||
| 229 | ||||
| 230 | /* Copy the added data to inbuf for windowing */ | |||
| 231 | nsamples = pvoc->chunksize * pvoc->channels; | |||
| 232 | memmove (pvoc->inbuf, pvoc->inbuf + nsamples, | |||
| 233 | nsamples * sizeof (pvocoder_sample_t)); | |||
| 234 | memcpy (pvoc->inbuf + nsamples, chunk, | |||
| 235 | nsamples * sizeof (pvocoder_sample_t)); | |||
| 236 | ||||
| 237 | /* Exchange two vectors in stft table (old last is new first) */ | |||
| 238 | memcpy (pvoc->stft[0], pvoc->stft[pvoc->overlaps], | |||
| 239 | nsamples * sizeof (FFTWT (complex)fftwf_complex)); | |||
| 240 | ||||
| 241 | /** | |||
| 242 | * Run windowing for overlapping chunk, the first one is skipped | |||
| 243 | * because it was already handled on last add. | |||
| 244 | */ | |||
| 245 | inbuf = pvoc->inbuf; | |||
| 246 | for (i=1; i<=pvoc->overlaps; i++) { | |||
| 247 | double cog = 0.0; | |||
| 248 | ||||
| 249 | /* Window the current chunk */ | |||
| 250 | inbuf += nsamples / pvoc->overlaps; | |||
| 251 | for (j=0; j<nsamples; j++) { | |||
| 252 | pvoc->stft[i][j][0] = inbuf[j] * pvoc->win[j / pvoc->channels]; | |||
| 253 | pvoc->cogbuf[j][0] = j * pvoc->stft[i][j][0]; | |||
| 254 | pvoc->stft[i][j][1] = pvoc->cogbuf[j][1] = 0.0; | |||
| 255 | } | |||
| 256 | ||||
| 257 | /* Perform fourier transformation for every channel */ | |||
| 258 | FFTWT (execute)fftwf_execute(pvoc->stftplans[i]); | |||
| 259 | ||||
| 260 | /* Calculate center of gravity for chunk if requested */ | |||
| 261 | if (pvoc->attack_detection) { | |||
| 262 | double numer = 0.0, denom = 0.0; | |||
| 263 | ||||
| 264 | FFTWT (execute)fftwf_execute(pvoc->cogplan); | |||
| 265 | for (j=0; j<nsamples; j++) { | |||
| 266 | double abs; | |||
| 267 | ||||
| 268 | numer += pvoc->stft[i][j][0] * pvoc->cogbuf[j][0] - | |||
| 269 | pvoc->stft[i][j][1] * pvoc->cogbuf[j][1]; | |||
| 270 | abs = sqrt (pvoc->stft[i][j][0] * pvoc->stft[i][j][0] + | |||
| 271 | pvoc->stft[i][j][1] * pvoc->stft[i][j][1]); | |||
| 272 | denom += abs * abs; | |||
| 273 | } | |||
| 274 | cog = numer / denom / nsamples; | |||
| 275 | } | |||
| 276 | ||||
| 277 | /* Scale with 2/3 because Hann window changes amplitude */ | |||
| 278 | for (j=0; j<nsamples/2; j++) { | |||
| 279 | pvoc->stft[i][j][0] *= 2.0/3.0; | |||
| 280 | pvoc->stft[i][j][1] *= 2.0/3.0; | |||
| 281 | } | |||
| 282 | ||||
| 283 | /* Set center of gravity information of this chunk */ | |||
| 284 | pvoc->stft[i][nsamples/2][0] = cog; | |||
| 285 | } | |||
| 286 | ||||
| 287 | /* Update the input idx of stft table with added chunks */ | |||
| 288 | pvoc->stftidx += pvoc->overlaps; | |||
| 289 | if (pvoc->stftidx == 0) { | |||
| 290 | /* Save first phase for correct reconstruction when scale is 1.0 */ | |||
| 291 | for (i=0; i<nsamples/2; i++) | |||
| 292 | pvoc->phase[i][0] = atan2 (pvoc->stft[0][i][1], | |||
| 293 | pvoc->stft[0][i][0]); | |||
| 294 | } | |||
| 295 | } | |||
| 296 | ||||
| 297 | /** | |||
| 298 | * Get one chunk of chunksize * channels (interleaved) if available and return | |||
| 299 | * how many chunks need to be added before this request can be completed. | |||
| 300 | * | |||
| 301 | * Generally if it returns > 0, run add_chunk and try again, if it returns 0 | |||
| 302 | * just handle the chunk buffer values and if it returns < 0 we have a problem. | |||
| 303 | */ | |||
| 304 | int | |||
| 305 | pvocoder_get_chunk (pvocoder_t *pvoc, pvocoder_sample_t *chunk) | |||
| 306 | { | |||
| 307 | int nsamples, pos, i, j; | |||
| 308 | ||||
| 309 | assert (pvoc)((pvoc) ? (void) (0) : __assert_fail ("pvoc", "../src/plugins/vocoder/pvocoder.c" , 309, __PRETTY_FUNCTION__)); | |||
| 310 | assert (chunk)((chunk) ? (void) (0) : __assert_fail ("chunk", "../src/plugins/vocoder/pvocoder.c" , 310, __PRETTY_FUNCTION__)); | |||
| 311 | ||||
| 312 | nsamples = pvoc->chunksize * pvoc->channels; | |||
| 313 | ||||
| 314 | /** | |||
| 315 | * Run the calculation routine for as many times as there are overlaps | |||
| 316 | * to get a full chunk in outbuf that can be copied into use | |||
| 317 | */ | |||
| 318 | for (i=pvoc->index%pvoc->overlaps; i<pvoc->overlaps; i++) { | |||
| 319 | double tmpidx; | |||
| 320 | ||||
| 321 | /** | |||
| 322 | * Calculate current position of outbuf and check that we have | |||
| 323 | * enough data in stft table for completion of this run, if not | |||
| 324 | * return information how many chunks would need to be added | |||
| 325 | */ | |||
| 326 | pos = i * nsamples / pvoc->overlaps; | |||
| 327 | tmpidx = pvoc->scaleidx - pvoc->stftidx; | |||
| 328 | if (tmpidx < 0 || tmpidx >= pvoc->overlaps) { | |||
| 329 | if (tmpidx < 0) | |||
| 330 | tmpidx -= pvoc->overlaps; | |||
| 331 | return (tmpidx / pvoc->overlaps); | |||
| 332 | } | |||
| 333 | ||||
| 334 | /** | |||
| 335 | * Call the data modification routine that also performs the | |||
| 336 | * inverse stft and windowing and copy the result to outbuf | |||
| 337 | */ | |||
| 338 | pvocoder_calculate_chunk (pvoc, tmpidx); | |||
| 339 | for (j=0; j<nsamples; j++) | |||
| 340 | pvoc->outbuf[pos+j] += pvoc->invbuf[j][0]; | |||
| 341 | ||||
| 342 | /* Increment both output index and scaled input index */ | |||
| 343 | pvoc->index++; | |||
| 344 | pvoc->scaleidx += pvoc->scale; | |||
| 345 | } | |||
| 346 | ||||
| 347 | /* Copy the result from outbuf and make room for some new output data */ | |||
| 348 | if (i == pvoc->overlaps) { | |||
| 349 | memcpy (chunk, pvoc->outbuf, | |||
| 350 | nsamples * sizeof (pvocoder_sample_t)); | |||
| 351 | memmove (pvoc->outbuf, pvoc->outbuf + nsamples, | |||
| 352 | nsamples * sizeof (pvocoder_sample_t)); | |||
| 353 | memset (pvoc->outbuf + nsamples, 0, | |||
| 354 | nsamples * sizeof (pvocoder_sample_t)); | |||
| 355 | } | |||
| 356 | ||||
| 357 | /* Rounding can cause too high or low values so we need to clip */ | |||
| 358 | for (i=0; i<nsamples; i++) | |||
| 359 | chunk[i] = CLAMP (chunk[i], -1.0, 1.0)(((chunk[i]) > (1.0)) ? (1.0) : (((chunk[i]) < (-1.0)) ? (-1.0) : (chunk[i]))); | |||
| 360 | ||||
| 361 | /* Operation was successfull so return 0 delta for needed chunks */ | |||
| 362 | return 0; | |||
| 363 | } | |||
| 364 | ||||
| 365 | void | |||
| 366 | pvocoder_get_final (pvocoder_t *pvoc, pvocoder_sample_t *chunk) | |||
| 367 | { | |||
| 368 | int nsamples; | |||
| 369 | ||||
| 370 | assert (pvoc)((pvoc) ? (void) (0) : __assert_fail ("pvoc", "../src/plugins/vocoder/pvocoder.c" , 370, __PRETTY_FUNCTION__)); | |||
| 371 | assert (chunk)((chunk) ? (void) (0) : __assert_fail ("chunk", "../src/plugins/vocoder/pvocoder.c" , 371, __PRETTY_FUNCTION__)); | |||
| 372 | ||||
| 373 | nsamples = pvoc->chunksize * pvoc->channels; | |||
| 374 | memcpy (chunk, pvoc->outbuf, nsamples * sizeof (pvocoder_sample_t)); | |||
| 375 | memset (pvoc->outbuf, 0, nsamples * sizeof (pvocoder_sample_t)); | |||
| 376 | pvocoder_reset (pvoc); | |||
| 377 | } | |||
| 378 | ||||
| 379 | static void | |||
| 380 | pvocoder_reset (pvocoder_t *pvoc) | |||
| 381 | { | |||
| 382 | /* 4 overlaps for (1-1/pvoc->overlaps) 75% should be a good value */ | |||
| 383 | pvoc->overlaps = 4; | |||
| 384 | ||||
| 385 | /* Reset index values */ | |||
| 386 | pvoc->index = 0; | |||
| 387 | pvoc->scaleidx = 0.0; | |||
| 388 | pvoc->stftidx = -2 * pvoc->overlaps; | |||
| 389 | } | |||
| 390 | ||||
| 391 | /* Fill given chunk with a Hann window of specified size */ | |||
| 392 | static void | |||
| 393 | pvocoder_get_window (pvocoder_sample_t *buffer, int chunksize, int winsize) | |||
| 394 | { | |||
| 395 | int halfsize, halfwinsize, i; | |||
| 396 | ||||
| 397 | halfsize = chunksize / 2; | |||
| 398 | halfwinsize = winsize / 2; | |||
| 399 | ||||
| 400 | for (i=0; i<halfwinsize; i++) | |||
| 401 | buffer[halfsize-i] = 0.5 * (1.0 + cos (M_PI3.14159265358979323846 * i / halfwinsize)); | |||
| 402 | for (i=halfsize; i<chunksize; i++) | |||
| 403 | buffer[i] = buffer[chunksize-i]; | |||
| 404 | } | |||
| 405 | ||||
| 406 | /** | |||
| 407 | * First make linear interpolation of the absolute values of the two chunks | |||
| 408 | * in stft table we are currently handling. Then add the current phase to our | |||
| 409 | * buffer, calculate delta phase and add it to phase buffer for next run. | |||
| 410 | * | |||
| 411 | * Finally run inverse fourier transformation and normalize and window the | |||
| 412 | * result. Resulting data can be found from pvoc->invbuf later on. | |||
| 413 | */ | |||
| 414 | static void | |||
| 415 | pvocoder_calculate_chunk (pvocoder_t *pvoc, double index) | |||
| 416 | { | |||
| 417 | FFTWT (complex)fftwf_complex *buffer; | |||
| 418 | int nsamples, idx, i, j, attack = 0; | |||
| 419 | double diff; | |||
| 420 | ||||
| 421 | /* Calculate help variables we use in the routine */ | |||
| 422 | nsamples = pvoc->chunksize * pvoc->channels; | |||
| 423 | idx = floor (index); | |||
| 424 | diff = index - floor (index); | |||
| 425 | buffer = pvoc->invbuf; | |||
| 426 | ||||
| 427 | if (pvoc->attack_detection) { | |||
| 428 | double treshold = 0.57; | |||
| 429 | ||||
| 430 | if (pvoc->stft[idx+1][nsamples/2][0] > treshold) { | |||
| 431 | pvoc->transient = 1; | |||
| 432 | return; | |||
| 433 | } else if (pvoc->stft[idx][nsamples/2][0] < treshold && | |||
| 434 | pvoc->transient) { | |||
| 435 | /* Release attack */ | |||
| 436 | attack = 1; | |||
| 437 | } | |||
| 438 | pvoc->transient = 0; | |||
| 439 | } | |||
| 440 | ||||
| 441 | /* Run modification loop for first half frequency data */ | |||
| 442 | for (i=0; i<nsamples/2; i++) { | |||
| 443 | double dp; | |||
| 444 | ||||
| 445 | /** | |||
| 446 | * Interpolate absolute values of the stft buffers. | |||
| 447 | * buffer = (1-diff)*abs(stft[idx]) + diff*abs(stft[idx+1]); | |||
| 448 | */ | |||
| 449 | buffer[i][0] = (1.0-diff)*sqrt (pow (pvoc->stft[idx][i][0], 2) + | |||
| 450 | pow (pvoc->stft[idx][i][1], 2)); | |||
| 451 | buffer[i][0] += diff*sqrt (pow (pvoc->stft[idx+1][i][0], 2) + | |||
| 452 | pow (pvoc->stft[idx+1][i][1], 2)); | |||
| 453 | ||||
| 454 | /** | |||
| 455 | * Add current phase into the buffer, notice that the fact that | |||
| 456 | * neither buffer nor phase includes config values which makes | |||
| 457 | * this operation much more simple. | |||
| 458 | * buffer = buffer*e^(j*phase); | |||
| 459 | */ | |||
| 460 | buffer[i][1] = buffer[i][0] * sin (pvoc->phase[i][0]); | |||
| 461 | buffer[i][0] *= cos (pvoc->phase[i][0]); | |||
| 462 | ||||
| 463 | /** | |||
| 464 | * Calculate the phase delta for the frequency we are handling. | |||
| 465 | * dp = angle(stft[idx+1]) - angle(stft[idx]); | |||
| 466 | */ | |||
| 467 | dp = atan2 (pvoc->stft[idx+1][i][1], pvoc->stft[idx+1][i][0]) - | |||
| 468 | atan2 (pvoc->stft[idx][i][1], pvoc->stft[idx][i][0]); | |||
| 469 | /* Phase delta is in [-2pi, 2pi] so we scale it to [-pi, pi] */ | |||
| 470 | dp -= 2 * M_PI3.14159265358979323846 * floor (dp / (2 * M_PI3.14159265358979323846) + 0.5); | |||
| 471 | ||||
| 472 | /* Save current phase delta for next iteration */ | |||
| 473 | pvoc->phase[i][0] += dp; | |||
| 474 | } | |||
| 475 | ||||
| 476 | /* Mirror the modifications to the second half as well */ | |||
| 477 | for (i=pvoc->channels; i<nsamples/2; i+=pvoc->channels) { | |||
| 478 | for (j=0; j<pvoc->channels; j++) { | |||
| 479 | buffer[nsamples-i+j][0] = buffer[i+j][0]; | |||
| 480 | buffer[nsamples-i+j][1] = -buffer[i+j][1]; | |||
| 481 | } | |||
| 482 | } | |||
| 483 | buffer[nsamples/2][0] = buffer[nsamples/2][1] = 0.0; | |||
| 484 | ||||
| 485 | /* Perform inverse fourier transform for each channel */ | |||
| 486 | FFTWT (execute)fftwf_execute(pvoc->invplan); | |||
| 487 | ||||
| 488 | /* Window and normalize the resulting sample buffer */ | |||
| 489 | if (attack) { | |||
| 490 | double max = 0.0, mult = 1.5; | |||
| 491 | ||||
| 492 | /* Clear first half of the output buffer */ | |||
| 493 | for (i=0; i<nsamples/2; i++) { | |||
| 494 | buffer[i][0] = buffer[i][1] = 0.0; | |||
| 495 | } | |||
| 496 | ||||
| 497 | /* Make sure we don't clip when amplifying attack */ | |||
| 498 | for (i=nsamples/2; i<nsamples; i++) { | |||
| 499 | if (ABS (buffer[i][0])(buffer[i][0] < 0.0 ? -buffer[i][0] : buffer[i][0]) > max) { | |||
| 500 | max = ABS (buffer[i][0])(buffer[i][0] < 0.0 ? -buffer[i][0] : buffer[i][0]); | |||
| 501 | } | |||
| 502 | } | |||
| 503 | mult = CLAMP (mult, 0, 1.0/max)(((mult) > (1.0/max)) ? (1.0/max) : (((mult) < (0)) ? ( 0) : (mult))); | |||
| 504 | ||||
| 505 | /* Window and scale the second half of output buffer */ | |||
| 506 | for (i=nsamples/2; i<nsamples; i++) { | |||
| 507 | buffer[i][0] *= mult * pvoc->win[i / pvoc->channels] / | |||
| 508 | pvoc->chunksize; | |||
| 509 | buffer[i][1] = 0.0; | |||
| 510 | } | |||
| 511 | } else { | |||
| 512 | for (i=0; i<nsamples; i++) { | |||
| 513 | buffer[i][0] *= pvoc->win[i / pvoc->channels] / | |||
| 514 | pvoc->chunksize; | |||
| 515 | buffer[i][1] = 0.0; | |||
| 516 | } | |||
| 517 | } | |||
| 518 | } |