File: | build-analysis/../src/plugins/vocoder/pvocoder.c |
Warning: | line 185, column 25 Array access (via field 'stftplans') results in a null pointer dereference |
1 | /* Phase vocoder routine for time-stretching of audio signal | |||
2 | * Copyright (C) 2006 Juho Vähä-Herttua | |||
3 | * | |||
4 | * This program is free software; you can redistribute it and/or | |||
5 | * modify it under the terms of the GNU General Public License | |||
6 | * as published by the Free Software Foundation; either version 2 | |||
7 | * of the License, or (at your option) any later version. | |||
8 | * | |||
9 | * This program is distributed in the hope that it will be useful, | |||
10 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | |||
11 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |||
12 | * GNU General Public License for more details. | |||
13 | * | |||
14 | * You should have received a copy of the GNU General Public License | |||
15 | * along with this program; if not, write to the Free Software | |||
16 | * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, | |||
17 | * MA 02110-1301, USA. | |||
18 | * | |||
19 | * | |||
20 | * References | |||
21 | * ---------- | |||
22 | * | |||
23 | * Phase vocoder routine based on matlab example code of Dan Ellis: | |||
24 | * http://labrosa.ee.columbia.edu/matlab/pvoc/ | |||
25 | * | |||
26 | * Attack detection methods based on paper: | |||
27 | * Axel Röbel - Transient detection and preservation in the phase vocoder | |||
28 | * (Released in ICMC2003) | |||
29 | * | |||
30 | */ | |||
31 | ||||
32 | #include <stdlib.h> | |||
33 | #include <string.h> | |||
34 | #include <math.h> | |||
35 | #include <assert.h> | |||
36 | ||||
37 | #include "pvocoder.h" | |||
38 | ||||
39 | #define CLAMP(x, low, high)(((x) > (high)) ? (high) : (((x) < (low)) ? (low) : (x) )) (((x) > (high)) ? (high) : (((x) < (low)) ? (low) : (x))) | |||
40 | #define ABS(x)(x < 0.0 ? -x : x) (x < 0.0 ? -x : x) | |||
41 | ||||
42 | struct pvocoder_s { | |||
43 | /* Basic information about the stream */ | |||
44 | int channels; | |||
45 | int chunksize; | |||
46 | int overlaps; | |||
47 | ||||
48 | /* Configurable processing variables */ | |||
49 | double scale; | |||
50 | int attack_detection; | |||
51 | ||||
52 | /* Index variables and input/output buffers */ | |||
53 | long index; | |||
54 | double scaleidx; | |||
55 | pvocoder_sample_t *win; | |||
56 | pvocoder_sample_t *inbuf; | |||
57 | pvocoder_sample_t *outbuf; | |||
58 | ||||
59 | /* Fourier transformation buffers */ | |||
60 | FFTWT (complex)fftwf_complex **stft; | |||
61 | FFTWT (complex)fftwf_complex *stftbuf; | |||
62 | FFTWT (plan)fftwf_plan *stftplans; | |||
63 | long stftidx; | |||
64 | ||||
65 | /* Center of gravity buffer and plan and data */ | |||
66 | FFTWT (complex)fftwf_complex *cogbuf; | |||
67 | FFTWT (plan)fftwf_plan cogplan; | |||
68 | int transient; | |||
69 | ||||
70 | /* Inverse transformation buffers */ | |||
71 | FFTWT (complex)fftwf_complex *invbuf; | |||
72 | FFTWT (plan)fftwf_plan invplan; | |||
73 | ||||
74 | /* Current phase information */ | |||
75 | FFTWT (complex)fftwf_complex *phase; | |||
76 | }; | |||
77 | ||||
78 | static void pvocoder_reset (pvocoder_t *pvoc); | |||
79 | static void pvocoder_get_window (pvocoder_sample_t *buffer, | |||
80 | int chunksize, | |||
81 | int winsize); | |||
82 | static void pvocoder_calculate_chunk (pvocoder_t *pvoc, double index); | |||
83 | ||||
84 | pvocoder_t * | |||
85 | pvocoder_init (int chunksize, int channels) | |||
86 | { | |||
87 | pvocoder_t *ret; | |||
88 | int i, nsamples; | |||
89 | ||||
90 | assert (chunksize > 0)((chunksize > 0) ? (void) (0) : __assert_fail ("chunksize > 0" , "../src/plugins/vocoder/pvocoder.c", 90, __PRETTY_FUNCTION__ )); | |||
91 | assert (channels > 0)((channels > 0) ? (void) (0) : __assert_fail ("channels > 0" , "../src/plugins/vocoder/pvocoder.c", 91, __PRETTY_FUNCTION__ )); | |||
92 | ||||
93 | ret = calloc (1, sizeof (pvocoder_t)); | |||
94 | if (!ret) | |||
| ||||
95 | goto error_init; | |||
96 | ||||
97 | nsamples = chunksize * channels; | |||
98 | ret->channels = channels; | |||
99 | ret->chunksize = chunksize; | |||
100 | ret->scale = 1.0; | |||
101 | ret->attack_detection = 0; | |||
102 | pvocoder_reset (ret); | |||
103 | ||||
104 | /* Create the (Hann) window for sample chunks */ | |||
105 | ret->win = FFTWT (malloc)fftwf_malloc(chunksize * sizeof (FFTWT (complex)fftwf_complex)); | |||
106 | if (!ret->win) | |||
107 | goto error_init; | |||
108 | pvocoder_get_window (ret->win, chunksize, chunksize); | |||
109 | ||||
110 | /* Reserve inbuf and outbuf for 2 chunks so we can filter all overlaps */ | |||
111 | ret->inbuf = calloc (2 * nsamples, sizeof (pvocoder_sample_t)); | |||
112 | ret->outbuf = calloc (2 * nsamples, sizeof (pvocoder_sample_t)); | |||
113 | if (!ret->inbuf || !ret->outbuf) | |||
114 | goto error_init; | |||
115 | ||||
116 | /* One buffer for each overlap plus the one of next chunk */ | |||
117 | ret->stft = calloc (ret->overlaps + 1, sizeof (FFTWT (complex *)fftwf_complex *)); | |||
118 | ret->stftbuf = FFTWT (malloc)fftwf_malloc((ret->overlaps + 1) * nsamples * | |||
119 | sizeof (FFTWT (complex)fftwf_complex)); | |||
120 | ret->stftplans = calloc (ret->overlaps + 1, sizeof (FFTWT (plan)fftwf_plan)); | |||
121 | if (!ret->stft || !ret->stftbuf || !ret->stftplans) | |||
122 | goto error_init; | |||
123 | ||||
124 | /* Update pointers into stftbuf array */ | |||
125 | for (i=0; i<=ret->overlaps; i++) | |||
126 | ret->stft[i] = ret->stftbuf + i * nsamples; | |||
127 | /* Calculate best plans for each stft buffer */ | |||
128 | for (i=1; i<=ret->overlaps; i++) { | |||
129 | ret->stftplans[i] = | |||
130 | FFTWT (plan_many_dft)fftwf_plan_many_dft(1, &chunksize, channels, | |||
131 | ret->stft[i], NULL((void*)0), channels, 1, | |||
132 | ret->stft[i], NULL((void*)0), channels, 1, | |||
133 | FFTW_FORWARD(-1), FFTW_MEASURE(0U)); | |||
134 | } | |||
135 | ||||
136 | /* Allocate center of gravity buffer and create plan */ | |||
137 | ret->cogbuf = FFTWT (malloc)fftwf_malloc(nsamples * sizeof (FFTWT (complex)fftwf_complex)); | |||
138 | if (!ret->cogbuf) | |||
139 | goto error_init; | |||
140 | ret->cogplan = FFTWT (plan_many_dft)fftwf_plan_many_dft(1, &chunksize, channels, | |||
141 | ret->cogbuf, NULL((void*)0), channels, 1, | |||
142 | ret->cogbuf, NULL((void*)0), channels, 1, | |||
143 | FFTW_BACKWARD(+1), FFTW_MEASURE(0U)); | |||
144 | ret->transient = 0; | |||
145 | ||||
146 | /* Allocate buffer for doing the calculations and inverse fft */ | |||
147 | ret->invbuf = FFTWT (malloc)fftwf_malloc(nsamples * sizeof (FFTWT (complex)fftwf_complex)); | |||
148 | if (!ret->invbuf) | |||
149 | goto error_init; | |||
150 | for (i=0; i<nsamples; i++) { | |||
151 | ret->invbuf[i][0] = ret->invbuf[i][1] = 0.0; | |||
152 | } | |||
153 | ret->invplan = FFTWT (plan_many_dft)fftwf_plan_many_dft(1, &chunksize, channels, | |||
154 | ret->invbuf, NULL((void*)0), channels, 1, | |||
155 | ret->invbuf, NULL((void*)0), channels, 1, | |||
156 | FFTW_BACKWARD(+1), FFTW_MEASURE(0U)); | |||
157 | ||||
158 | /* Allocate buffer for phase information of current stream */ | |||
159 | ret->phase = FFTWT (malloc)fftwf_malloc(nsamples/2 * sizeof (FFTWT (complex)fftwf_complex)); | |||
160 | if (!ret->phase) | |||
161 | goto error_init; | |||
162 | ||||
163 | return ret; | |||
164 | ||||
165 | error_init: | |||
166 | pvocoder_close (ret); | |||
167 | return NULL((void*)0); | |||
168 | } | |||
169 | ||||
170 | void | |||
171 | pvocoder_close (pvocoder_t *pvoc) | |||
172 | { | |||
173 | int i; | |||
174 | ||||
175 | if (pvoc) { | |||
176 | FFTWT (free)fftwf_free(pvoc->phase); | |||
177 | ||||
178 | FFTWT (destroy_plan)fftwf_destroy_plan(pvoc->invplan); | |||
179 | FFTWT (free)fftwf_free(pvoc->invbuf); | |||
180 | ||||
181 | FFTWT (destroy_plan)fftwf_destroy_plan(pvoc->cogplan); | |||
182 | FFTWT (free)fftwf_free(pvoc->cogbuf); | |||
183 | ||||
184 | for (i=1; i<=pvoc->overlaps; i++) | |||
185 | FFTWT (destroy_plan)fftwf_destroy_plan(pvoc->stftplans[i]); | |||
| ||||
186 | free (pvoc->stftplans); | |||
187 | FFTWT (free)fftwf_free(pvoc->stftbuf); | |||
188 | free (pvoc->stft); | |||
189 | ||||
190 | free (pvoc->inbuf); | |||
191 | free (pvoc->outbuf); | |||
192 | free (pvoc->win); | |||
193 | } | |||
194 | free (pvoc); | |||
195 | } | |||
196 | ||||
197 | void | |||
198 | pvocoder_set_scale (pvocoder_t *pvoc, double scale) | |||
199 | { | |||
200 | assert (pvoc)((pvoc) ? (void) (0) : __assert_fail ("pvoc", "../src/plugins/vocoder/pvocoder.c" , 200, __PRETTY_FUNCTION__)); | |||
201 | ||||
202 | if (!pvoc) | |||
203 | return; | |||
204 | pvoc->scale = scale; | |||
205 | } | |||
206 | ||||
207 | void | |||
208 | pvocoder_set_attack_detection (pvocoder_t *pvoc, int enabled) | |||
209 | { | |||
210 | assert (pvoc)((pvoc) ? (void) (0) : __assert_fail ("pvoc", "../src/plugins/vocoder/pvocoder.c" , 210, __PRETTY_FUNCTION__)); | |||
211 | ||||
212 | if (!pvoc) | |||
213 | return; | |||
214 | pvoc->attack_detection = enabled; | |||
215 | } | |||
216 | ||||
217 | /** | |||
218 | * Add new chunk to stft table, mainly window the data, perform some | |||
219 | * stft transforms and update the stft table accordingly. | |||
220 | */ | |||
221 | void | |||
222 | pvocoder_add_chunk (pvocoder_t *pvoc, pvocoder_sample_t *chunk) | |||
223 | { | |||
224 | pvocoder_sample_t *inbuf; | |||
225 | int nsamples, i, j; | |||
226 | ||||
227 | assert (pvoc)((pvoc) ? (void) (0) : __assert_fail ("pvoc", "../src/plugins/vocoder/pvocoder.c" , 227, __PRETTY_FUNCTION__)); | |||
228 | assert (chunk)((chunk) ? (void) (0) : __assert_fail ("chunk", "../src/plugins/vocoder/pvocoder.c" , 228, __PRETTY_FUNCTION__)); | |||
229 | ||||
230 | /* Copy the added data to inbuf for windowing */ | |||
231 | nsamples = pvoc->chunksize * pvoc->channels; | |||
232 | memmove (pvoc->inbuf, pvoc->inbuf + nsamples, | |||
233 | nsamples * sizeof (pvocoder_sample_t)); | |||
234 | memcpy (pvoc->inbuf + nsamples, chunk, | |||
235 | nsamples * sizeof (pvocoder_sample_t)); | |||
236 | ||||
237 | /* Exchange two vectors in stft table (old last is new first) */ | |||
238 | memcpy (pvoc->stft[0], pvoc->stft[pvoc->overlaps], | |||
239 | nsamples * sizeof (FFTWT (complex)fftwf_complex)); | |||
240 | ||||
241 | /** | |||
242 | * Run windowing for overlapping chunk, the first one is skipped | |||
243 | * because it was already handled on last add. | |||
244 | */ | |||
245 | inbuf = pvoc->inbuf; | |||
246 | for (i=1; i<=pvoc->overlaps; i++) { | |||
247 | double cog = 0.0; | |||
248 | ||||
249 | /* Window the current chunk */ | |||
250 | inbuf += nsamples / pvoc->overlaps; | |||
251 | for (j=0; j<nsamples; j++) { | |||
252 | pvoc->stft[i][j][0] = inbuf[j] * pvoc->win[j / pvoc->channels]; | |||
253 | pvoc->cogbuf[j][0] = j * pvoc->stft[i][j][0]; | |||
254 | pvoc->stft[i][j][1] = pvoc->cogbuf[j][1] = 0.0; | |||
255 | } | |||
256 | ||||
257 | /* Perform fourier transformation for every channel */ | |||
258 | FFTWT (execute)fftwf_execute(pvoc->stftplans[i]); | |||
259 | ||||
260 | /* Calculate center of gravity for chunk if requested */ | |||
261 | if (pvoc->attack_detection) { | |||
262 | double numer = 0.0, denom = 0.0; | |||
263 | ||||
264 | FFTWT (execute)fftwf_execute(pvoc->cogplan); | |||
265 | for (j=0; j<nsamples; j++) { | |||
266 | double abs; | |||
267 | ||||
268 | numer += pvoc->stft[i][j][0] * pvoc->cogbuf[j][0] - | |||
269 | pvoc->stft[i][j][1] * pvoc->cogbuf[j][1]; | |||
270 | abs = sqrt (pvoc->stft[i][j][0] * pvoc->stft[i][j][0] + | |||
271 | pvoc->stft[i][j][1] * pvoc->stft[i][j][1]); | |||
272 | denom += abs * abs; | |||
273 | } | |||
274 | cog = numer / denom / nsamples; | |||
275 | } | |||
276 | ||||
277 | /* Scale with 2/3 because Hann window changes amplitude */ | |||
278 | for (j=0; j<nsamples/2; j++) { | |||
279 | pvoc->stft[i][j][0] *= 2.0/3.0; | |||
280 | pvoc->stft[i][j][1] *= 2.0/3.0; | |||
281 | } | |||
282 | ||||
283 | /* Set center of gravity information of this chunk */ | |||
284 | pvoc->stft[i][nsamples/2][0] = cog; | |||
285 | } | |||
286 | ||||
287 | /* Update the input idx of stft table with added chunks */ | |||
288 | pvoc->stftidx += pvoc->overlaps; | |||
289 | if (pvoc->stftidx == 0) { | |||
290 | /* Save first phase for correct reconstruction when scale is 1.0 */ | |||
291 | for (i=0; i<nsamples/2; i++) | |||
292 | pvoc->phase[i][0] = atan2 (pvoc->stft[0][i][1], | |||
293 | pvoc->stft[0][i][0]); | |||
294 | } | |||
295 | } | |||
296 | ||||
297 | /** | |||
298 | * Get one chunk of chunksize * channels (interleaved) if available and return | |||
299 | * how many chunks need to be added before this request can be completed. | |||
300 | * | |||
301 | * Generally if it returns > 0, run add_chunk and try again, if it returns 0 | |||
302 | * just handle the chunk buffer values and if it returns < 0 we have a problem. | |||
303 | */ | |||
304 | int | |||
305 | pvocoder_get_chunk (pvocoder_t *pvoc, pvocoder_sample_t *chunk) | |||
306 | { | |||
307 | int nsamples, pos, i, j; | |||
308 | ||||
309 | assert (pvoc)((pvoc) ? (void) (0) : __assert_fail ("pvoc", "../src/plugins/vocoder/pvocoder.c" , 309, __PRETTY_FUNCTION__)); | |||
310 | assert (chunk)((chunk) ? (void) (0) : __assert_fail ("chunk", "../src/plugins/vocoder/pvocoder.c" , 310, __PRETTY_FUNCTION__)); | |||
311 | ||||
312 | nsamples = pvoc->chunksize * pvoc->channels; | |||
313 | ||||
314 | /** | |||
315 | * Run the calculation routine for as many times as there are overlaps | |||
316 | * to get a full chunk in outbuf that can be copied into use | |||
317 | */ | |||
318 | for (i=pvoc->index%pvoc->overlaps; i<pvoc->overlaps; i++) { | |||
319 | double tmpidx; | |||
320 | ||||
321 | /** | |||
322 | * Calculate current position of outbuf and check that we have | |||
323 | * enough data in stft table for completion of this run, if not | |||
324 | * return information how many chunks would need to be added | |||
325 | */ | |||
326 | pos = i * nsamples / pvoc->overlaps; | |||
327 | tmpidx = pvoc->scaleidx - pvoc->stftidx; | |||
328 | if (tmpidx < 0 || tmpidx >= pvoc->overlaps) { | |||
329 | if (tmpidx < 0) | |||
330 | tmpidx -= pvoc->overlaps; | |||
331 | return (tmpidx / pvoc->overlaps); | |||
332 | } | |||
333 | ||||
334 | /** | |||
335 | * Call the data modification routine that also performs the | |||
336 | * inverse stft and windowing and copy the result to outbuf | |||
337 | */ | |||
338 | pvocoder_calculate_chunk (pvoc, tmpidx); | |||
339 | for (j=0; j<nsamples; j++) | |||
340 | pvoc->outbuf[pos+j] += pvoc->invbuf[j][0]; | |||
341 | ||||
342 | /* Increment both output index and scaled input index */ | |||
343 | pvoc->index++; | |||
344 | pvoc->scaleidx += pvoc->scale; | |||
345 | } | |||
346 | ||||
347 | /* Copy the result from outbuf and make room for some new output data */ | |||
348 | if (i == pvoc->overlaps) { | |||
349 | memcpy (chunk, pvoc->outbuf, | |||
350 | nsamples * sizeof (pvocoder_sample_t)); | |||
351 | memmove (pvoc->outbuf, pvoc->outbuf + nsamples, | |||
352 | nsamples * sizeof (pvocoder_sample_t)); | |||
353 | memset (pvoc->outbuf + nsamples, 0, | |||
354 | nsamples * sizeof (pvocoder_sample_t)); | |||
355 | } | |||
356 | ||||
357 | /* Rounding can cause too high or low values so we need to clip */ | |||
358 | for (i=0; i<nsamples; i++) | |||
359 | chunk[i] = CLAMP (chunk[i], -1.0, 1.0)(((chunk[i]) > (1.0)) ? (1.0) : (((chunk[i]) < (-1.0)) ? (-1.0) : (chunk[i]))); | |||
360 | ||||
361 | /* Operation was successfull so return 0 delta for needed chunks */ | |||
362 | return 0; | |||
363 | } | |||
364 | ||||
365 | void | |||
366 | pvocoder_get_final (pvocoder_t *pvoc, pvocoder_sample_t *chunk) | |||
367 | { | |||
368 | int nsamples; | |||
369 | ||||
370 | assert (pvoc)((pvoc) ? (void) (0) : __assert_fail ("pvoc", "../src/plugins/vocoder/pvocoder.c" , 370, __PRETTY_FUNCTION__)); | |||
371 | assert (chunk)((chunk) ? (void) (0) : __assert_fail ("chunk", "../src/plugins/vocoder/pvocoder.c" , 371, __PRETTY_FUNCTION__)); | |||
372 | ||||
373 | nsamples = pvoc->chunksize * pvoc->channels; | |||
374 | memcpy (chunk, pvoc->outbuf, nsamples * sizeof (pvocoder_sample_t)); | |||
375 | memset (pvoc->outbuf, 0, nsamples * sizeof (pvocoder_sample_t)); | |||
376 | pvocoder_reset (pvoc); | |||
377 | } | |||
378 | ||||
379 | static void | |||
380 | pvocoder_reset (pvocoder_t *pvoc) | |||
381 | { | |||
382 | /* 4 overlaps for (1-1/pvoc->overlaps) 75% should be a good value */ | |||
383 | pvoc->overlaps = 4; | |||
384 | ||||
385 | /* Reset index values */ | |||
386 | pvoc->index = 0; | |||
387 | pvoc->scaleidx = 0.0; | |||
388 | pvoc->stftidx = -2 * pvoc->overlaps; | |||
389 | } | |||
390 | ||||
391 | /* Fill given chunk with a Hann window of specified size */ | |||
392 | static void | |||
393 | pvocoder_get_window (pvocoder_sample_t *buffer, int chunksize, int winsize) | |||
394 | { | |||
395 | int halfsize, halfwinsize, i; | |||
396 | ||||
397 | halfsize = chunksize / 2; | |||
398 | halfwinsize = winsize / 2; | |||
399 | ||||
400 | for (i=0; i<halfwinsize; i++) | |||
401 | buffer[halfsize-i] = 0.5 * (1.0 + cos (M_PI3.14159265358979323846 * i / halfwinsize)); | |||
402 | for (i=halfsize; i<chunksize; i++) | |||
403 | buffer[i] = buffer[chunksize-i]; | |||
404 | } | |||
405 | ||||
406 | /** | |||
407 | * First make linear interpolation of the absolute values of the two chunks | |||
408 | * in stft table we are currently handling. Then add the current phase to our | |||
409 | * buffer, calculate delta phase and add it to phase buffer for next run. | |||
410 | * | |||
411 | * Finally run inverse fourier transformation and normalize and window the | |||
412 | * result. Resulting data can be found from pvoc->invbuf later on. | |||
413 | */ | |||
414 | static void | |||
415 | pvocoder_calculate_chunk (pvocoder_t *pvoc, double index) | |||
416 | { | |||
417 | FFTWT (complex)fftwf_complex *buffer; | |||
418 | int nsamples, idx, i, j, attack = 0; | |||
419 | double diff; | |||
420 | ||||
421 | /* Calculate help variables we use in the routine */ | |||
422 | nsamples = pvoc->chunksize * pvoc->channels; | |||
423 | idx = floor (index); | |||
424 | diff = index - floor (index); | |||
425 | buffer = pvoc->invbuf; | |||
426 | ||||
427 | if (pvoc->attack_detection) { | |||
428 | double treshold = 0.57; | |||
429 | ||||
430 | if (pvoc->stft[idx+1][nsamples/2][0] > treshold) { | |||
431 | pvoc->transient = 1; | |||
432 | return; | |||
433 | } else if (pvoc->stft[idx][nsamples/2][0] < treshold && | |||
434 | pvoc->transient) { | |||
435 | /* Release attack */ | |||
436 | attack = 1; | |||
437 | } | |||
438 | pvoc->transient = 0; | |||
439 | } | |||
440 | ||||
441 | /* Run modification loop for first half frequency data */ | |||
442 | for (i=0; i<nsamples/2; i++) { | |||
443 | double dp; | |||
444 | ||||
445 | /** | |||
446 | * Interpolate absolute values of the stft buffers. | |||
447 | * buffer = (1-diff)*abs(stft[idx]) + diff*abs(stft[idx+1]); | |||
448 | */ | |||
449 | buffer[i][0] = (1.0-diff)*sqrt (pow (pvoc->stft[idx][i][0], 2) + | |||
450 | pow (pvoc->stft[idx][i][1], 2)); | |||
451 | buffer[i][0] += diff*sqrt (pow (pvoc->stft[idx+1][i][0], 2) + | |||
452 | pow (pvoc->stft[idx+1][i][1], 2)); | |||
453 | ||||
454 | /** | |||
455 | * Add current phase into the buffer, notice that the fact that | |||
456 | * neither buffer nor phase includes config values which makes | |||
457 | * this operation much more simple. | |||
458 | * buffer = buffer*e^(j*phase); | |||
459 | */ | |||
460 | buffer[i][1] = buffer[i][0] * sin (pvoc->phase[i][0]); | |||
461 | buffer[i][0] *= cos (pvoc->phase[i][0]); | |||
462 | ||||
463 | /** | |||
464 | * Calculate the phase delta for the frequency we are handling. | |||
465 | * dp = angle(stft[idx+1]) - angle(stft[idx]); | |||
466 | */ | |||
467 | dp = atan2 (pvoc->stft[idx+1][i][1], pvoc->stft[idx+1][i][0]) - | |||
468 | atan2 (pvoc->stft[idx][i][1], pvoc->stft[idx][i][0]); | |||
469 | /* Phase delta is in [-2pi, 2pi] so we scale it to [-pi, pi] */ | |||
470 | dp -= 2 * M_PI3.14159265358979323846 * floor (dp / (2 * M_PI3.14159265358979323846) + 0.5); | |||
471 | ||||
472 | /* Save current phase delta for next iteration */ | |||
473 | pvoc->phase[i][0] += dp; | |||
474 | } | |||
475 | ||||
476 | /* Mirror the modifications to the second half as well */ | |||
477 | for (i=pvoc->channels; i<nsamples/2; i+=pvoc->channels) { | |||
478 | for (j=0; j<pvoc->channels; j++) { | |||
479 | buffer[nsamples-i+j][0] = buffer[i+j][0]; | |||
480 | buffer[nsamples-i+j][1] = -buffer[i+j][1]; | |||
481 | } | |||
482 | } | |||
483 | buffer[nsamples/2][0] = buffer[nsamples/2][1] = 0.0; | |||
484 | ||||
485 | /* Perform inverse fourier transform for each channel */ | |||
486 | FFTWT (execute)fftwf_execute(pvoc->invplan); | |||
487 | ||||
488 | /* Window and normalize the resulting sample buffer */ | |||
489 | if (attack) { | |||
490 | double max = 0.0, mult = 1.5; | |||
491 | ||||
492 | /* Clear first half of the output buffer */ | |||
493 | for (i=0; i<nsamples/2; i++) { | |||
494 | buffer[i][0] = buffer[i][1] = 0.0; | |||
495 | } | |||
496 | ||||
497 | /* Make sure we don't clip when amplifying attack */ | |||
498 | for (i=nsamples/2; i<nsamples; i++) { | |||
499 | if (ABS (buffer[i][0])(buffer[i][0] < 0.0 ? -buffer[i][0] : buffer[i][0]) > max) { | |||
500 | max = ABS (buffer[i][0])(buffer[i][0] < 0.0 ? -buffer[i][0] : buffer[i][0]); | |||
501 | } | |||
502 | } | |||
503 | mult = CLAMP (mult, 0, 1.0/max)(((mult) > (1.0/max)) ? (1.0/max) : (((mult) < (0)) ? ( 0) : (mult))); | |||
504 | ||||
505 | /* Window and scale the second half of output buffer */ | |||
506 | for (i=nsamples/2; i<nsamples; i++) { | |||
507 | buffer[i][0] *= mult * pvoc->win[i / pvoc->channels] / | |||
508 | pvoc->chunksize; | |||
509 | buffer[i][1] = 0.0; | |||
510 | } | |||
511 | } else { | |||
512 | for (i=0; i<nsamples; i++) { | |||
513 | buffer[i][0] *= pvoc->win[i / pvoc->channels] / | |||
514 | pvoc->chunksize; | |||
515 | buffer[i][1] = 0.0; | |||
516 | } | |||
517 | } | |||
518 | } |